
bitclust Documentation
Release 0.0.6

Roy Gonzalez-Aleman

Jul 25, 2022

Contents

1 Description 1

2 Main Dependencies 3

3 Citation 5

4 Licence 7
4.1 Installation . 7
4.2 Usage . 8
4.3 Help . 11
4.4 Benchmark . 12
4.5 Changelog . 13

5 References 15

i

ii

CHAPTER 1

Description

BitClust is a Python command-line interface (CLI) conceived for fast clustering of relatively long Molecular Dynamics
trajectories following the Daura’s algorithm1. Retrieved clusters are roughly equivalent to those reported by VMD’s
internal command measure cluster but they are computed in a much faster way (see benchmark section for more
details).

What BitClust offers is a classical tradeoff; RAM for speed. It can calculate all pairwise distances between frames to
run a clustering job and then store them in memory instead of recalculating them whenever a cluster is found.

It is worth noting that memory resources have been deeply optimized by encoding similarity distances as bits (0 if the
distance is less equal than a specified threshold, 1 otherwise). This encoding result in a storage reduction of at least
32X/64X when compared to similar algorithms that save the same information as single/double-precision float values.

1 Daura, X.; van Gunsteren, W. F.; Jaun, B.; Mark, A. E.; Gademann, K.; Seebach, D. Peptide Folding: When Simulation Meets Experiment.
Angew. Chemie Int. Ed. 1999, 38 (1/2), 236–240.

1

bitclust Documentation, Release 0.0.6

2 Chapter 1. Description

CHAPTER 2

Main Dependencies

BitClust is built on the shoulders of two giants:

• MDTraj software that allows a very fast calculation of RMSD pairwise distances between all frames of trajec-
tories in a parallelized fashion and

• bitarray third-party python library which offers a memory-efficient data structure of bit-vectors (bit arrays) and
a set of bitwise operations that are the very heart of our clustering implementation.

3

http://mdtraj.org/1.9.0/
https://pypi.org/project/bitarray/

bitclust Documentation, Release 0.0.6

4 Chapter 2. Main Dependencies

CHAPTER 3

Citation

If you make use of BitClust in your scientific work, BitCool and cite it ;)

5

https://doi.org/10.1021/acs.jcim.9b00828

bitclust Documentation, Release 0.0.6

6 Chapter 3. Citation

CHAPTER 4

Licence

BitClust is licensed under GNU General Public License v3.0.

4.1 Installation

4.1.1 MDTraj

Before installing BitClust, please be sure that mdtraj is available in your system. It is recommended that you install
mdtraj using conda.

$ conda install -c conda-forge mdtraj

conda is an open source package management system and environment management system that runs on Windows,
macOS and Linux. Conda quickly installs, runs and updates packages and their dependencies.

You can install mdtraj with pip, if you prefer.

$ pip install mdtraj

pip is the package installer for Python. You can use pip to install packages from the Python Package Index and other
indexes.

Any of them will install mdtraj along with all dependencies from a pre-compiled binary. If you don’t have Python
or the conda package manager, you can start with the Anaconda Scientific Python distribution. pip homepage is
available here

4.1.2 BitClust

Via pip:

After succesful installation of mdtraj you can easily proceed to install BitClust and the rest of its dependencies
using pip.

7

https://store.continuum.io/cshop/anaconda/
https://pip.pypa.io/en/stable/

bitclust Documentation, Release 0.0.6

$ pip install bitclust

Then, you should be able to see BitClust help by typing in a console:

$ bitclust -h

Via GitHub:

After succesful installation of mdtraj you can easily proceed to install BitClust and the rest of its dependencies from
GitHub.

$ git clone https://github.com/rglez/bitclust
$ cd bitclust
$ python setup.py install

4.2 Usage

4.2.1 Valid formats

BitClust inherits valid trajectory and topology formats from MDTraj.

Valid trajectory extensions are: .dcd, .dtr, .hdf5, .xyz, .binpos, .netcdf, .prmtop, .lh5, .pdb, .trr,
.xtc, .xml, .arc, .lammpstrj and .hoomdxml.

If trajectory format does not include topological information, user must pass a path to a topology file. Valid topology
extensions are: .pdb, .pdb.gz, .h5, .lh5, .prmtop, .parm7, .prm7, .psf, .mol2, .hoomdxml, .gro,
.arc and .hdf5.

4.2.2 Default usage

Once BitClust installed, you can have access to the program’s help, which contains short descriptions of available
arguments, by running

$ bitclust -h

Only one argument is always mandatory, -traj, which specifies the path to the trajectory file. If the trajectory format
does not provide topological information of the system, it must be supplied from a topology file through the -top
argument. All other arguments are always optional and if not explicitly specified they will take their default values
commented below.

A minimal run like

$ bitclust -top tau_6K.pdb -traj tau_6K.dcd

loads the tau_6K.dcd trajectory into tau_6K.pdb coordinates (both present at current working directory as not path
was provided) and performs a clustering job using Daura’s algorithm with a cutoff of 1A (-cutoff 1) on the whole
trajectory.

Arguments -first, -last and -stride can be used to select an interval (they default to 0, last frame and 1
respectively).

Default atom selection corresponds to all atoms (-sel all). BitClust will retrieve all clusters with at least 2 frames
(-size 2).

8 Chapter 4. Licence

bitclust Documentation, Release 0.0.6

Frame 0 will be used as reference (-ref 0) to make an RMSD graph. All produced output will be saved in the current
working directory (-odir .).

4.2.3 Default outputs

BitClust outputs basic graphics for fast inspection of the clustering job results (see figure below). All these graphs
and others can be constructed from two generated text files: clusters_statistics.txt and frames_statistics.txt.

The first one contains as columns every cluster ID` (starting from 0, -1 corresponding to unclustered frames),
their size, the percent this size represents from the total of frames and the center frame of every cluster.

The second file contains as columns every frame ID (starting from 0), the cluster IDwhere every frame belongs
to and the RMSD value of every frame respect to the specified reference (default reference is frame 0).

BitClust’s basic graph outputs

Figure A: RMSD of all frames in trajectory versus reference frame passed to argument -ref. Useful for fast visual-
ization of trajectory’s geometrical dispersion.

Figure B: Superposition of first five clusters onto Figure A. Useful for fast visualization of most populated clusters
location along the trajectory.

Figure C: Clusters (including outliers in red) size. Useful for inspection of clusters relative population.

Figure D: Cluster lines. Useful to qualitatively assessment on temporal distribution of clusters.

4.2.4 Selection syntax

BitClust inherits atom selection syntax from MDTraj which is similar to that in VMD. We reproduce below some
of the MDTraj examples. Note that in BitClust all keywords (or their synonyms) string are passed directly to -sel

4.2. Usage 9

bitclust Documentation, Release 0.0.6

argument as it is illustrated in the Usage Examples section. For more details on possible syntax, please refer to MDTraj
original documentation.

MDTraj recognizes the following keywords.

Keyword Synonyms Type Description
all everything bool Matches everything
none nothing bool Matches nothing
backbone is_backbone bool Whether atom is in the backbone of a protein residue
sidechain is_sidechain bool Whether atom is in the sidechain of a protein residue
protein is_protein bool Whether atom is part of a protein residue
water is_water,

waters
bool Whether atom is part of a water residue

name str Atom name
index int Atom index (0-based)
type element,

symbol
str 1 or 2-letter chemical symbols from the periodic table

mass float Element atomic mass (daltons)
residue resSeq int Residue Sequence record (generally 1-based, but depends on

topology)
resid resi int Residue index (0-based)
resname resn str Residue name
rescode code, resc` str 1-letter residue code
chainid int Chain index (0-based)

Operators

Standard boolean operations (and, or, and not) as well as their C-style aliases (&&, ||, !) are supported. The
expected logical operators (<, <=, ==, !=, >=, >) are also available, as along with their FORTRAN-style synonyms
(lt, le, eq, ne, ge, gt).

Range queries

Range queries are also supported. The range condition is an expression of the form <expression> <low> to
<high>, which resolves to <low> <= <expression> <= <high>. For example

The following queries are equivalent
-sel "resid 10 to 30"
-sel "(10 <= resid) and (resid <= 30)"

4.2.5 Usage examples

Next, you will find some usage examples of BitClust.

An interval (1000 frames) of tau_6K.pdb trajectory (no topology file is needed)
will be clustered with default values for all other arguments (see help section).

$ bitclust -traj tau_6K.pdb -first 0 -last 100000 -stride 100

10 Chapter 4. Licence

http://mdtraj.org/1.9.3/atom_selection.html
http://mdtraj.org/1.9.3/atom_selection.html

bitclust Documentation, Release 0.0.6

Clustering all atoms but hydrogen´ ones.

$ bitclust -top tau_6K.pdb -traj tau_6K.dcd -sel "\"name =~ '[^H.*]'\""

Backbone atoms of trajectory tau_6K.dcd will be clustered using a cutoff of 4 A.
Retrieved clusters will have at least 15 frames and output RMSD graphs will use
frame 2580 (counting from 0) as a reference structure.

$ bitclust -top tau_6K.pdb -traj tau_6K.dcd -sel "backbone" -cutoff 4 -minsize 15 -
→˓ref 2580

Default run saving results to local/test/run1 (relative path to current working
→˓directory)

$ bitclust -traj tau_6K.pdb -odir "local/test/run1"

4.3 Help

4.3.1 Basic help

BitClust help is displayed in the console when typing bitclust -h

$ bitclust -h

usage: bitclust [-h] [-top TOPOLOGY] [-traj TRAJECTORY] [-first FIRST]
[-last LAST] [-stride STRIDE] [-sel SELECTION]
[-cutoff CUTOFF] [-minsize MINSIZE] [-max_clust MAX_CLUST]
[-ref REFERENCE] [-numouts NUM_OUTS] [-odir OUTDIR]

BitClust: Fast & memory efficient clustering of long MD trajectories

optional arguments:
-h, --help show this help message and exit
-top TOPOLOGY path to topology file (psf/pdb)
-traj TRAJECTORY path to trajectory file
-first FIRST first frame to analyze (starting from 0)
-last LAST last frame to analyze (starting from 0)
-stride STRIDE stride of frames to analyze
-sel SELECTION atom selection (MDTraj syntax)
-cutoff CUTOFF RMSD cutoff for pairwise comparisons in A
-minsize MINSIZE minimum number of frames inside returned clusters
-max_clust MAX_CLUST maximum number of returned clusters
-ref REFERENCE reference frame to align trajectory
-numouts NUM_OUTS number of clusters and leaders to print as pdb
-odir OUTDIR output directory to store analysis

4.3.2 Arguments details

-traj (str): This is the only argument that is always required. Valid extensions for trajectories are .dcd, .
dtr, .hdf5, .xyz, .binpos, .netcdf, .prmtop, .lh5, .pdb, .trr, .xtc, .xml, .arc, .lammpstrj
and .hoomdxml.

4.3. Help 11

bitclust Documentation, Release 0.0.6

-top (str): If trajectory format includes topological information this argument is not required. Otherwise, user
must pass a path to a topology file. Valid topology extensions are .pdb, .pdb.gz, .h5, .lh5, .prmtop, .parm7,
.prm7, .psf, .mol2, .hoomdxml, .gro, .arc and .hdf5.

-first (int, default=0): First frame to analyze (starting count from 0)

-last (int, default=-1): Last frame to analyze (starting count from 0). Value -1 indicates that last frame
will be used.

-stride (int, default=1): Stride of frames to analyze. Use this argument to reduce trajectory size when
performing exploratory analysis of cutoff value.

-sel (str, default='all'): Atom selection. BitClust inherits MDtraj syntax selection which is very
flexible. For a deeper insight please refer to the MDTraj atom selection reference original documentation.
Common cases are listed at usage examples section.

-cutoff (int, default=1): RMSD cutoff for similarity measures given in Angstroms (1 A = 0.1 nm).

-minsize (int, default=2): Minimum number of frames inside returned clusters. 0 is not a meaningful
value and 1 implies an unclustered frame (no other frame is similar to it). Greater values of this parameter can speed
up the algorithm.

-max_clust (int, default=all): Maximum number of calculated clusters. Change the default for a better
performance whenever you need only the first clusters.

-ref (int, default=0): Reference frame to align trajectory.

-numouts (int, default=5): Number of clusters and their corresponding representative frames (leaders) to
print as pdb.

-odir (str, default="."): Output directory to store analysis. If not specified, files and figs will be stored
in current working directory.

4.4 Benchmark

A set of commonly used options for clustering MD simulations has been chosen for performance comparison between
BitClust and other clustering software. Run time and memory consumption of each method is reported in Table 2 for
the three trajectories 6K, 100K, and 500K described in the Computational Details section (having 6000, 100000 and
500000 frames respectively).

The clustering method selected for each software was as follows; Daura for BitClust and GROMACS (through the
gromos option), quality threshold for py-MS and VMD, qt-like for Wordom and median-linkage for TTClust.
We would like to stress out that despite their native denomination in their original software, the chosen algorithms
correspond all to Daura, as it has been recently reported1

In the case of VMD, we decided to show the performance of processing five (VMD-5, the default value) and all (VMD-
ALL) clusters as a way to evaluate the usefulness of its implementation, which is specially conceived for preserving
memory resources.

Table 2 Run time ([hh:]mm:ss) and memory peaks (GB) comparison of several clustering algorithms. A crash was
declared if the job consumed more than 64 GB of RAM or last for more than 60 h. (For an extensive discussion of this
benchmark, you can refer to the academic article2)

1 Roy González-Alemán, David Hernández-Castillo, Julio Caballero, and Luis A. Montero-Cabrera. Journal of Chemical Information and
Modeling. DOI: 10.1021/acs.jcim.9b00558

2 Roy González-Alemán, David Hernández-Castillo, Alejandro Rodríguez-Serradet, Julio Caballero, Erix W. Hernández-Rodríguez, and Luis
Alberto Montero-Cabrera. Journal of Chemical Information and Modeling. DOI: 10.1021/acs.jcim.9b00828.

12 Chapter 4. Licence

bitclust Documentation, Release 0.0.6

Software Trajectory 6K Trajectory 100K Trajectory 500K
Run time Memory peak Run time Memory peak Run time Memory peak

BitClust 00:04 0.15 01:25:28 9.41 06:00:08 33.84
py-MS 00:04 0.15 01:46:02 61.54 03:03:49 CRASH
Wordom 00:04 0.15 01:26:13 CRASH 02:54:23 CRASH
VMD-5 00:04 0.15 04:59:22 6.97 29:34:43 4.13
VMD-ALL 00:04 0.15 05:08:10 6.97 CRASH 4.14
TTClust 00:04 0.15 00:01:59 CRASH 00:00:37 CRASH
GROMACS 00:04 0.15 26:13:29 52.22 01:09:03 CRASH

4.4.1 References

4.5 Changelog

4.5.1 Version 0.0.11 (10/05/2020)

• Change of contact mail to academic adresses

• Function of bitarray_ph4 library replaced by new versioof equivalents in bitarray library

• Bug in the argument “-last” is fixed. Now it defaults to None instead of -1

• New argument “-max_clust” lets user specify the maximum number of cluster to calculate

• New argument “-numouts” lets users specify a number of clusters and leaders to be printed as independent pdb
files

• The function “load_trajectory” now raise errors if selections are incorrect or contain no atoms

• The function “load_trajectory” now treat selections in a way that improve RAM savings

4.5.2 Version 0.0.6 (October, 2019)

• Initial stable public release after publication.

4.5. Changelog 13

bitclust Documentation, Release 0.0.6

14 Chapter 4. Licence

CHAPTER 5

References

15

	Description
	Main Dependencies
	Citation
	Licence
	Installation
	Usage
	Help
	Benchmark
	Changelog

	References

